The canonical structure of Wess-Zumino-Witten models

نویسنده

  • G. Papadopoulos
چکیده

The phase space of theWess-Zumino-Witten model on a circle with target space a compact, connected, semisimple Lie group G is defined and the corresponding symplectic form is given. We present a careful derivation of the Poisson brackets of the Wess-Zumino-Witten model. We also study the canonical structure of the supersymmetric and the gauged Wess-Zumino-Witten models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrability of the Wess–Zumino–Witten Model as a Non–Ultralocal Theory

We consider the 2–dimensional Wess–Zumino–Witten (WZW) model in the canonical formalism introduced in [5]. Using an r–s matrix approach to non–ultralocal field theories we find the Poisson algebra of monodromy matrices and of conserved quantities with a new, non–dynamical, r matrix. †[email protected][email protected] §[email protected]

متن کامل

The Wess-Zumino-Witten term in non-commutative two-dimensional fermion models

We study the effective action associated to the Dirac operator in two dimensional non-commutative Field Theory. Starting from the axial anomaly, we compute the determinant of the Dirac operator and we find that even in the U(1) theory, a Wess-Zumino-Witten like term arises. Investigador CONICET Investigador CICBA 1

متن کامل

Institute for Mathematical Physics

We extend the analysis [18] of the canonical structure of the Wess-Zumino-Witten theory to the bulk and boundary coset G/H models. The phase spaces of the coset theories in the closed and in the open geometry appear to coincide with those of a double ChernSimons theory on two different 3-manifolds. In particular, we obtain an explicit description of the canonical structure of the boundary G/G c...

متن کامل

Wess - Zumino - Witten and fermion models in noncommutative space

We analyze the connection between Wess-Zumino-Witten and free fermion models in two-dimensional noncommutative space. Starting from the computation of the determinant of the Dirac operator in a gauge field background, we derive the corresponding bosonization recipe studying, as an example, bosonization of the U (N) Thirring model. Concerning the properties of the noncommutative Wess-Zumi-no-Wit...

متن کامل

The Global Phase Space Structure of the Wess - Zumino - Witten Model

We present a new parameterisation of the space of solutions of the Wess-Zumino-Witten model on a cylinder, with target space a compact, connected Lie group G. Using the covariant canonical approach the phase space of the theory is shown to be the co-tangent bundle of the loop group of the Lie group G, in agreement with the result from the Hamiltonian approach. The Poisson brackets in this phase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992